
1

Lexical Analysis and

Lexical Analyzer Generators

Chapter 3

2

The Reason Why Lexical

Analysis is a Separate Phase

• Simplifies the design of the compiler

– LL(1) or LR(1) with 1 lookahead would not be possible

• Provides efficient implementation

– Systematic techniques to implement lexical analyzers

by hand or automatically

– Stream buffering methods to scan input

• Improves portability

– Non-standard symbols and alternate character

encodings can be more easily translated

3

Interaction of the Lexical

Analyzer with the Parser

Lexical

Analyzer
Parser

Source

Program

Token,

tokenval

Symbol Table

Get next

token

error error

4

Attributes of Tokens

Lexical analyzer

<id, “y”> <assign, > <num, 31> <+, > <num, 28> <*, > <id, “x”>

y := 31 + 28*x

Parser

token

tokenval

(token attribute)

5

Tokens, Patterns, and Lexemes

• A token is a classification of lexical units

– For example: id and num

• Lexemes are the specific character strings that

make up a token

– For example: abc and 123

• Patterns are rules describing the set of lexemes

belonging to a token

– For example: “letter followed by letters and digits” and

“non-empty sequence of digits”

6

Specification of Patterns for

Tokens: Terminology

• An alphabet  is a finite set of symbols
(characters)

• A string s is a finite sequence of symbols
from 

– |s| denotes the length of string s

–  denotes the empty string, thus || = 0

• A language is a specific set of strings over
some fixed alphabet 

7

Specification of Patterns for

Tokens: String Operations

• The concatenation of two strings x and y is

denoted by xy

• The exponentation of a string s is defined

by

s0 = 

si = si-1s for i > 0

(note that s = s = s)

8

Specification of Patterns for

Tokens: Language Operations
• Union

L  M = {s | s  L or s  M}

• Concatenation
LM = {xy | x  L and y  M}

• Exponentiation
L0 = {}; Li = Li-1L

• Kleene closure
L* = i=0,…, Li

• Positive closure
L+ = i=1,…, Li

9

Specification of Patterns for

Tokens: Regular Expressions
• Basis symbols:

–  is a regular expression denoting language {}

– a   is a regular expression denoting {a}

• If r and s are regular expressions denoting
languages L(r) and M(s) respectively, then

– r | s is a regular expression denoting L(r)  M(s)

– rs is a regular expression denoting L(r)M(s)

– r* is a regular expression denoting L(r)*

– (r) is a regular expression denoting L(r)

• A language defined by a regular expression is
called a regular set

10

Specification of Patterns for

Tokens: Regular Definitions

• Naming convention for regular expressions:

d1  r1

d2  r2

…

dn  rn

where ri is a regular expression over

  {d1, d2, …, di-1 }

• Each dj in ri is textually substituted in ri

11

Specification of Patterns for

Tokens: Regular Definitions

• Example:

letter  A | B | … | Z | a | b | … | z
digit  0 | 1 | … | 9

id  letter (letter | digit)*

• Cannot use recursion, this is illegal:

digits  digit digits | digit

12

Specification of Patterns for

Tokens: Notational Shorthands

• We frequently use the following shorthands:

r+ = rr*

r? = r | 
[a-z] = a | b | c | … | z

• For example:

digit  [0-9]

num  digit+ (. digit+)? (E (+|-)? digit+)?

13

Regular Definitions and

Grammars

stmt  if expr then stmt

| if expr then stmt else stmt

| 
expr  term relop term

| term

term  id

| num if  if

then  then

else  else

relop  < | <= | <> | > | >= | =

id  letter (letter | digit)*

num  digit+ (. digit+)? (E (+|-)? digit+)?

Grammar

Regular definitions

14

Implementing a Scanner Using

Transition Diagrams

0 21

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9
start letter

10 11*other

letter or digit

return(gettoken(),

install_id())

relop  < | <= | <> | > | >= | =

id  letter (letter | digit)*

15Implementing a Scanner Using

Transition Diagrams (Code)
token nexttoken()

{ while (1) {

switch (state) {

case 0: c = nextchar();

if (c==blank || c==tab || c==newline) {

state = 0;

lexeme_beginning++;

}

else if (c==‘<‘) state = 1;

else if (c==‘=‘) state = 5;

else if (c==‘>’) state = 6;

else state = fail();

break;

case 1:

…

case 9: c = nextchar();

if (isletter(c)) state = 10;

else state = fail();

break;

case 10: c = nextchar();

if (isletter(c)) state = 10;

else if (isdigit(c)) state = 10;

else state = 11;

break;

…

int fail()

{ forward = token_beginning;

swith (start) {

case 0: start = 9; break;

case 9: start = 12; break;

case 12: start = 20; break;

case 20: start = 25; break;

case 25: recover(); break;

default: /* error */

}

return start;

}

Decides what

other start state

is applicable

16

The Lex and Flex Scanner

Generators

• Lex and its newer cousin flex are scanner

generators

• Systematically translate regular definitions

into C source code for efficient scanning

• Generated code is easy to integrate in C

applications

17

Creating a Lexical Analyzer with

Lex and Flex

lex or flex

compiler

lex

source

program

lex.l

lex.yy.c

input

stream

C

compiler

a.out
sequence

of tokens

lex.yy.c

a.out

18

Lex Specification

• A lex specification consists of three parts:
regular definitions, C declarations in %{ %}
%%

translation rules
%%

user-defined auxiliary procedures

• The translation rules are of the form:
p1 { action1 }
p2 { action2 }
…
pn { actionn }

19

Regular Expressions in Lex
x match the character x

\. match the character .

“string”match contents of string of characters

. match any character except newline

^ match beginning of a line

$ match the end of a line

[xyz] match one character x, y, or z (use \ to escape -)

[^xyz]match any character except x, y, and z

[a-z] match one of a to z

r* closure (match zero or more occurrences)

r+ positive closure (match one or more occurrences)

r? optional (match zero or one occurrence)

r1r2 match r1 then r2 (concatenation)

r1|r2 match r1 or r2 (union)

(r) grouping

r1\r2 match r1 when followed by r2

{d} match the regular expression defined by d

20

Example Lex Specification 1

%{

#include <stdio.h>

%}

%%

[0-9]+ { printf(“%s\n”, yytext); }

.|\n { }

%%

main()

{ yylex();

}

Contains

the matching

lexeme

Invokes

the lexical

analyzer

lex spec.l

gcc lex.yy.c -ll

./a.out < spec.l

Translation

rules

21

Example Lex Specification 2

%{

#include <stdio.h>

int ch = 0, wd = 0, nl = 0;

%}

delim [\t]+

%%

\n { ch++; wd++; nl++; }

^{delim} { ch+=yyleng; }

{delim} { ch+=yyleng; wd++; }

. { ch++; }

%%

main()

{ yylex();

printf("%8d%8d%8d\n", nl, wd, ch);

}

Regular

definition
Translation

rules

22

Example Lex Specification 3

%{

#include <stdio.h>

%}

digit [0-9]

letter [A-Za-z]

id {letter}({letter}|{digit})*

%%

{digit}+ { printf(“number: %s\n”, yytext); }

{id} { printf(“ident: %s\n”, yytext); }

. { printf(“other: %s\n”, yytext); }

%%

main()

{ yylex();

}

Regular

definitions
Translation

rules

23

Example Lex Specification 4
%{ /* definitions of manifest constants */

#define LT (256)

…

%}

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?

%%

{ws} { }

if {return IF;}

then {return THEN;}

else {return ELSE;}

{id} {yylval = install_id(); return ID;}

{number} {yylval = install_num(); return NUMBER;}

“<“ {yylval = LT; return RELOP;}

“<=“ {yylval = LE; return RELOP;}

“=“ {yylval = EQ; return RELOP;}

“<>“ {yylval = NE; return RELOP;}

“>“ {yylval = GT; return RELOP;}

“>=“ {yylval = GE; return RELOP;}

%%

int install_id()

…

Return

token to

parser

Token

attribute

Install yytext as

identifier in symbol table

24

Design of a Lexical Analyzer

Generator

• Translate regular expressions to NFA

• Translate NFA to an efficient DFA

regular

expressions
NFA DFA

Simulate NFA

to recognize

tokens

Simulate DFA

to recognize

tokens

Optional

25

Nondeterministic Finite

Automata

• Definition: an NFA is a 5-tuple (S,,,s0,F)

where

S is a finite set of states

 is a finite set of input symbol alphabet

 is a mapping from S to a set of states

s0  S is the start state

F  S is the set of accepting (or final) states

26

Transition Graph

• An NFA can be diagrammatically

represented by a labeled directed graph

called a transition graph

0
start a

1 32
b b

a

b

S = {0,1,2,3}

 = {a,b}

s0 = 0

F = {3}

27

Transition Table

• The mapping  of an NFA can be

represented in a transition table

State
Input
a

Input
b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}

(0,b) = {0}

(1,b) = {2}

(2,b) = {3}

28

The Language Defined by an

NFA

• An NFA accepts an input string x iff there is some

path with edges labeled with symbols from x in

sequence from the start state to some accepting

state in the transition graph

• A state transition from one state to another on the

path is called a move

• The language defined by an NFA is the set of input
strings it accepts, such as (a|b)*abb for the

example NFA

29

Design of a Lexical Analyzer

Generator: RE to NFA to DFA

s0

N(p1)

N(p2)
start




N(pn)



…

p1 { action1 }

p2 { action2 }

…

pn { actionn }

action1

action2

actionn

Lex specification with

regular expressions

NFA

DFA

Subset construction

(optional)

30

N(r2)N(r1)

From Regular Expression to NFA

(Thompson’s Construction)
fi 

f
a

i

fi

N(r1)

N(r2)

start

start

start 

 



fi
start

N(r) fi
start







a

r1 | r2

r1r2

r*  

31

Combining the NFAs of a Set of

Regular Expressions
2

a
1

start

6
a

3
start

4 5
b b

8b7
start

a b

a { action1 }

abb { action2 }

a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8b7

a b

0
start







32

Simulating the Combined NFA

Example 1
2

a
1

6
a

3 4 5
b b

8b7

a b

0
start







0

1

3

7

2

4

7

7 8

Must find the longest match:

Continue until no further moves are possible

When last state is accepting: execute action

action1

action2

action3

a ba a
none
action3

33

Simulating the Combined NFA

Example 2
2

a
1

6
a

3 4 5
b b

8b7

a b

0
start







0

1

3

7

2

4

7

5

8

6

8

When two or more accepting states are reached, the

first action given in the Lex specification is executed

action1

action2

action3

a bb a
none
action2

action3

34

Deterministic Finite Automata

• A deterministic finite automaton is a special case

of an NFA

– No state has an -transition

– For each state s and input symbol a there is at most one

edge labeled a leaving s

• Each entry in the transition table is a single state

– At most one path exists to accept a string

– Simulation algorithm is simple

35

Example DFA

0
start a

1 32
b b

b
b

a

a

a

A DFA that accepts (a|b)*abb

36

Conversion of an NFA into a

DFA

• The subset construction algorithm converts an

NFA into a DFA using:

-closure(s) = {s}  {t | s …  t}
-closure(T) = sT -closure(s)

move(T,a) = {t | s a t and s  T}

• The algorithm produces:

Dstates is the set of states of the new DFA

consisting of sets of states of the NFA

Dtran is the transition table of the new DFA

37

-closure and move Examples

2
a

1

6
a

3 4 5
b b

8b7

a b

0
start







-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}

-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}

-closure({7}) = {7}
move({7},b) = {8}

-closure({8}) = {8}

move({8},a) = 

0

1

3

7

2

4

7

7 8

a ba a
none

Also used to simulate NFAs

38

Simulating an NFA using

-closure and move

S := -closure({s0})

Sprev := 

a := nextchar()

while S   do

Sprev := S

S := -closure(move(S,a))

a := nextchar()

end do

if Sprev  F   then

execute action in Sprev

return “yes”

else return “no”

39

The Subset Construction

Algorithm

Initially, -closure(s0) is the only state in Dstates and it is unmarked

while there is an unmarked state T in Dstates do

mark T

for each input symbol a   do

U := -closure(move(T,a))

if U is not in Dstates then

add U as an unmarked state to Dstates

end if

Dtran[T,a] := U

end do

end do

40

Subset Construction Example 1

0
start a

1 10

2

b

b

a

b

3

4 5

6 7 8 9
 











A
start

B

C

D E

b

b

b

b

b

a
a

a

a

Dstates

A = {0,1,2,4,7}

B = {1,2,3,4,6,7,8}

C = {1,2,4,5,6,7}

D = {1,2,4,5,6,7,9}

E = {1,2,4,5,6,7,10}

a

41

Subset Construction Example 2

2
a

1

6
a

3 4 5
b b

8b7

a b

0
start






a1

a2

a3

Dstates

A = {0,1,3,7}

B = {2,4,7}

C = {8}

D = {7}

E = {5,8}

F = {6,8}

A
start

a

D

b

b

b

a
b

b
B

C

E F

a

b

a1

a3

a3 a2 a3

42

Minimizing the Number of States

of a DFA

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

A
start

B D E
b b

a

a

b

a

a

43

From Regular Expression to DFA

Directly

• The important states of an NFA are those

without an -transition, that is if

move({s},a)   for some a then s is an

important state

• The subset construction algorithm uses only

the important states when it determines

-closure(move(T,a))

44

From Regular Expression to DFA

Directly (Algorithm)

• Augment the regular expression r with a

special end symbol # to make accepting

states important: the new expression is r#

• Construct a syntax tree for r#

• Traverse the tree to construct functions

nullable, firstpos, lastpos, and followpos

45

From Regular Expression to DFA

Directly: Syntax Tree of (a|b)*abb#

*

|

1

a
2

b

3
a

4
b

5

b

#
6

concatenation

closure

alternation

position

number

(for leafs )

46

From Regular Expression to DFA

Directly: Annotating the Tree
• nullable(n): the subtree at node n generates

languages including the empty string

• firstpos(n): set of positions that can match the first
symbol of a string generated by the subtree at
node n

• lastpos(n): the set of positions that can match the
last symbol of a string generated be the subtree at
node n

• followpos(i): the set of positions that can follow
position i in the tree

47

From Regular Expression to DFA

Directly: Annotating the Tree

Node n nullable(n) firstpos(n) lastpos(n)

Leaf  true  

Leaf i false {i} {i}

|

/ \

c1 c2

nullable(c1)

or

nullable(c2)

firstpos(c1)



firstpos(c2)

lastpos(c1)



lastpos(c2)

•

/ \

c1 c2

nullable(c1)

and

nullable(c2)

if nullable(c1) then

firstpos(c1) 

firstpos(c2)

else firstpos(c1)

if nullable(c2) then

lastpos(c1) 

lastpos(c2)

else lastpos(c2)

*

|

c1

true firstpos(c1) lastpos(c1)

48

From Regular Expression to DFA

Directly: Syntax Tree of (a|b)*abb#

{6}{1, 2, 3}

{5}{1, 2, 3}

{4}{1, 2, 3}

{3}{1, 2, 3}

{1, 2}{1, 2} *

{1, 2}{1, 2} |

{1}{1} a {2}{2} b

{3}{3} a

{4}{4} b

{5}{5} b

{6}{6} #

nullable

firstpos lastpos

1 2

3

4

5

6

49

From Regular Expression to DFA

Directly: followpos

for each node n in the tree do

if n is a cat-node with left child c1 and right child c2 then

for each i in lastpos(c1) do

followpos(i) := followpos(i)  firstpos(c2)

end do

else if n is a star-node

for each i in lastpos(n) do

followpos(i) := followpos(i)  firstpos(n)

end do

end if

end do

50

From Regular Expression to DFA

Directly: Algorithm

s0 := firstpos(root) where root is the root of the syntax tree

Dstates := {s0} and is unmarked

while there is an unmarked state T in Dstates do

mark T

for each input symbol a  do

let U be the set of positions that are in followpos(p)

for some position p in T,

such that the symbol at position p is a

if U is not empty and not in Dstates then

add U as an unmarked state to Dstates

end if

Dtran[T,a] := U

end do

end do

51

From Regular Expression to DFA

Directly: Example

1,2,3
start a 1,2,

3,4

1,2,

3,6

1,2,

3,5

b b

b b

a

a

a

Node followpos

1 {1, 2, 3}

2 {1, 2, 3}

3 {4}

4 {5}

5 {6}

6 -

1

2

3 4 5 6

52

Time-Space Tradeoffs

Automaton
Space

(worst case)
Time

(worst case)

NFA O(|r|) O(|r||x|)

DFA O(2|r|) O(|x|)

