Lexical Analysis and Lexical Analyzer Generators

Chapter 3

The Reason Why Lexical Analysis is a Separate Phase

- Simplifies the design of the compiler
 LL(1) or LR(1) with 1 lookahead would not be possible
- Provides efficient implementation
 - Systematic techniques to implement lexical analyzers by hand or automatically
 - Stream buffering methods to scan input
- Improves portability
 - Non-standard symbols and alternate character encodings can be more easily translated

Interaction of the Lexical Analyzer with the Parser

Tokens, Patterns, and Lexemes

- A *token* is a classification of lexical units
 For example: id and num
- *Lexemes* are the specific character strings that make up a token
 - For example: **abc** and **123**
- *Patterns* are rules describing the set of lexemes belonging to a token
 - For example: "*letter followed by letters and digits*" and "*non-empty sequence of digits*"

Specification of Patterns for Tokens: Terminology

- An *alphabet* Σ is a finite set of symbols (characters)
- A *string s* is a finite sequence of symbols from Σ
 - -|s| denotes the length of string s
 - $-\varepsilon$ denotes the empty string, thus $|\varepsilon| = 0$
- A *language* is a specific set of strings over some fixed alphabet Σ

Specification of Patterns for Tokens: String Operations

- The *concatenation* of two strings *x* and *y* is denoted by *xy*
- The *exponentation* of a string *s* is defined by

$$s^0 = \varepsilon$$

 $s^i = s^{i-1}s$ for $i > 0$
(note that $s\varepsilon = \varepsilon s = s$)

Specification of Patterns for Tokens: Language Operations

• Union

$$L \cup M = \{ s \mid s \in L \text{ or } s \in M \}$$

- Concatenation $LM = \{xy \mid x \in L \text{ and } y \in M\}$
- Exponentiation $L^0 = \{\varepsilon\}; L^i = L^{i-1}L$
- Kleene closure $L^* = \bigcup_{i=0,...,\infty} L^i$
- Positive closure

 $L^+ = \bigcup_{i=1,\ldots,\infty} L^i$

Specification of Patterns for Tokens: Regular Expressions

- Basis symbols:
 - ε is a regular expression denoting language { ε } - $a \in \Sigma$ is a regular expression denoting {a}
- If *r* and *s* are regular expressions denoting languages *L(r)* and *M(s)* respectively, then
 - $-r \mid s$ is a regular expression denoting $L(r) \cup M(s)$
 - rs is a regular expression denoting L(r)M(s)
 - r^* is a regular expression denoting $L(r)^*$
 - -(r) is a regular expression denoting L(r)
- A language defined by a regular expression is called a *regular set*

Specification of Patterns for Tokens: Regular Definitions

• Naming convention for regular expressions: $d_1 \rightarrow r_1$

$$d_2 \rightarrow r_2$$

 $d_n \rightarrow r_n$ where r_i is a regular expression over $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$

• Each d_j in r_i is textually substituted in r_i

Specification of Patterns for Tokens: Regular Definitions

• Example:

 $\begin{array}{l} \text{letter} \rightarrow A \mid B \mid \dots \mid Z \mid a \mid b \mid \dots \mid z \\ \text{digit} \rightarrow 0 \mid 1 \mid \dots \mid 9 \\ \text{id} \rightarrow \text{letter} (\text{ letter} \mid \text{digit})^{*} \end{array}$

• Cannot use recursion, this is illegal:

```
digits \rightarrow digit digits | digit
```

Specification of Patterns for Tokens: Notational Shorthands

- For example:
 digit → [0-9]
 num → digit⁺ (. digit⁺)? (E (+|-)? digit⁺)?

Regular Definitions and Grammars

Grammar $stmt \rightarrow if expr then stmt$ if *expr* then *stmt* else *stmt* 3 $expr \rightarrow term relop term$ term **Regular** definitions $term \rightarrow id$ $if \rightarrow if$ num then \rightarrow then $else \rightarrow else$ $relop \rightarrow < | <= | <> | >| >= | =$ $id \rightarrow letter (letter | digit)^*$ num \rightarrow digit⁺ (. digit⁺)? (E (+|-)? digit⁺)?

Implementing a Scanner Using Transition Diagrams

Implementing a Scanner Using Transition Diagrams (Code)

```
token nexttoken()
{ while (1) {
    switch (state) {
    case 0: c = nextchar();
       if (c==blank || c==tab || c==newline) {
         state = 0;
         lexeme beginning++;
       }
       else if (c='<') state = 1;
       else if (c==`=`) state = 5;
       else if (c=='>') state = 6;
       else state = fail();
       break:
     case 1:
     case 9: c = nextchar();
       if (isletter(c)) state = 10;
       else state = fail();
       break:
     case 10: c = nextchar();
       if (isletter(c)) state = 10;
       else if (isdigit(c)) state = 10;
       else state = 11;
       break;
```

...

```
Decides what
      other start state
       is applicable
int fail()
{ forward = token beginning;
  swith (start) {
 case 0: start = 9; break;
 case 9: start = 12; break;
 case 12: start = 20; break;
 case 20: start = 25; break;
  case 25: recover(); break;
 default: /* error */
 return start;
}
```

The Lex and Flex Scanner Generators

- *Lex* and its newer cousin *flex* are scanner generators
- Systematically translate regular definitions into C source code for efficient scanning
- Generated code is easy to integrate in C applications

Creating a Lexical Analyzer with Lex and Flex

Lex Specification

- A lex specification consists of three parts: regular definitions, C declarations in % { % } %% translation rules %% user-defined auxiliary procedures
- The *translation rules* are of the form:

$p_1 \ p_2$	$\{ action_1 \} \\ \{ action_2 \}$
\dots p_n	{ action _n }

Regular Expressions in Lex

- match the character **x** Х match the character. ١. "*string*" match contents of string of characters match any character except newline match beginning of a line ۸ \$ match the end of a line [xyz] match one character x, y, or z (use \setminus to escape –) [**xyz**] match any character except **x**, **y**, and **z** match one of **a** to **z** [a-z]1* closure (match zero or more occurrences) positive closure (match one or more occurrences) *1*+ optional (match zero or one occurrence) 1? match r_1 then r_2 (concatenation) $r_1 r_2$ $r_1 | r_2$ match r_1 or r_2 (union) (*r*) grouping $r_1 \setminus r_2$ match r_1 when followed by r_2
- $\{d\}$ match the regular expression defined by d

lex spec.l
gcc lex.yy.c -ll
./a.out < spec.l</pre>

Example Lex Specification 2

Example Lex Specification 3

Example Lex Specification 4

```
%{ /* definitions of manifest constants */
#define LT (256)
•••
8}
delim
          [ \t n]
          {delim}+
ws
                                                             Return
letter
          [A-Za-z]
digit
          [0-9]
                                                            token to
id
          {letter}({letter}|{digit})*
number
          {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?
                                                             parser
응응
{ws}
          { }
                                                   Token
          {return IF;}
if
                                                 attribute
then
          {return THEN;}
else
          {return ELSE:
          {yylval = install_id(); return ID;}
{id}
          {yylval = install num() return NUMBER;}
{number}
~~
          \{yy|val = LT; return RELOR;\}
"<="
          {yylval = LE; return RELOP;
"="
          {yylval = EQ; return RELOP;}
"<>"
          {yylval = NE; return RELOP;}
">"
          {yylval = GT; return RELOP;}
">="
          {yylval = GE; return RELOP;}
                                               Install yytext as
응응
                                           identifier in symbol table
int install id()
```

•••

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Nondeterministic Finite Automata

- Definition: an NFA is a 5-tuple $(S, \Sigma, \delta, s_0, F)$ where
 - *S* is a finite set of *states* Σ is a finite set of *input symbol alphabet* δ is a *mapping* from $S \times \Sigma$ to a set of states $s_0 \in S$ is the *start state* $F \subseteq S$ is the set of *accepting* (or *final*) *states*

Transition Graph

• An NFA can be diagrammatically represented by a labeled directed graph called a *transition graph*

Transition Table

• The mapping δ of an NFA can be represented in a *transition table*

$\delta(0,a) = \{0,1\}$	State	Input a	Input b
$\delta(0,\mathbf{b}) = \{0\} \longrightarrow$	0	$\{0, 1\}$	{0}
$\delta(1,\mathbf{b}) = \{2\}$	1		{2}
$\delta(2,\mathbf{D}) = \{3\}$	2		{3}

The Language Defined by an NFA

- An NFA *accepts* an input string *x* **iff** there is some path with edges labeled with symbols from *x* in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*
- The *language defined by* an NFA is the set of input strings it accepts, such as $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$ for the example NFA

Design of a Lexical Analyzer Generator: RE to NFA to DFA

Lex specification with regular expressions

DFA

NFA

From Regular Expression to NFA (Thompson's Construction)

start

Deterministic Finite Automata

- A *deterministic finite automaton* is a special case of an NFA
 - No state has an ε -transition
 - For each state s and input symbol a there is at most one edge labeled a leaving s
- Each entry in the transition table is a single state
 - At most one path exists to accept a string
 - Simulation algorithm is simple

Example DFA

A DFA that accepts (**a**|**b**)***abb**

Conversion of an NFA into a DFA

• The *subset construction algorithm* converts an NFA into a DFA using:

 $\varepsilon\text{-closure}(s) = \{s\} \cup \{t \mid s \to_{\varepsilon} \dots \to_{\varepsilon} t\}$ $\varepsilon\text{-closure}(T) = \bigcup_{s \in T} \varepsilon\text{-closure}(s)$ $move(T,a) = \{t \mid s \to_{a} t \text{ and } s \in T\}$

• The algorithm produces: *Dstates* is the set of states of the new DFA consisting of sets of states of the NFA *Dtran* is the transition table of the new DFA

ε-closure and move Examples

 ε -closure({0}) = {0,1,3,7} move({0,1,3,7},a) = {2,4,7} ε -closure({2,4,7}) = {2,4,7} move({2,4,7},a) = {7} ε -closure({7}) = {7} move({7},b) = {8} ε -closure({8}) = {8} move({8},a) = Ø

Simulating an NFA using ε*-closure* and *move*

 $S := \varepsilon$ -closure($\{s_0\}$) $S_{prev} := \emptyset$ a := nextchar() while $S \neq \emptyset$ do $S_{prev} := S$ $S := \varepsilon$ -closure(move(S,a)) a := nextchar()end do if $S_{prev} \cap F \neq \emptyset$ then execute action in S_{prev} return "yes" return "no" else

The Subset Construction Algorithm

Initially, ε -*closure*(s_0) is the only state in *Dstates* and it is unmarked while there is an unmarked state *T* in *Dstates* do mark *T* for each input symbol $a \in \Sigma$ do

for each input symbol $a \in \mathcal{L}$ do $U := \varepsilon$ -closure(move(T,a)) if U is not in Dstates then add U as an unmarked state to Dstates end if Dtran[T,a] := Uend do end do

Subset Construction Example 1

Subset Construction Example 2

Minimizing the Number of States of a DFA

From Regular Expression to DFA Directly

- The *important states* of an NFA are those without an ε-transition, that is if *move*({s}, a) ≠ Ø for some a then s is an important state
- The subset construction algorithm uses only the important states when it determines
 ε-closure(move(T,a))

From Regular Expression to DFA Directly (Algorithm)

- Augment the regular expression *r* with a special end symbol # to make accepting states important: the new expression is *r*#
- Construct a syntax tree for *1*#
- Traverse the tree to construct functions *nullable, firstpos, lastpos, and followpos*

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: Annotating the Tree

- *nullable*(*n*): the subtree at node *n* generates languages including the empty string
- *firstpos*(*n*): set of positions that can match the first symbol of a string generated by the subtree at node *n*
- *lastpos*(*n*): the set of positions that can match the last symbol of a string generated be the subtree at node *n*
- *followpos*(*i*): the set of positions that can follow position *i* in the tree

From Regular Expression to DFA Directly: Annotating the Tree

Node <i>n</i>	nullable(n)	firstpos(n)	lastpos(n)
Leaf ɛ	true	Ø	Ø
Leaf <i>i</i>	false	<i>{1}</i>	<i>{1}</i>
$egin{array}{ccc} & \mathbf{I} & & \\ & & / & \setminus & \\ & \mathbf{c}_1 & \mathbf{c}_2 & & \end{array}$	$nullable(c_1)$ or $nullable(c_2)$	$ \begin{array}{c} \textit{firstpos}(c_1) \\ \cup \\ \textit{firstpos}(c_2) \end{array} $	$\begin{array}{c} \textit{lastpos}(c_1) \\ \cup \\ \textit{lastpos}(c_2) \end{array}$
$c_1 c_2$	$nullable(c_1)$ and $nullable(c_2)$	if <i>nullable</i> (c_1) then <i>firstpos</i> (c_1) \cup <i>firstpos</i> (c_2) else <i>firstpos</i> (c_1)	if $nullable(c_2)$ then $lastpos(c_1) \cup$ $lastpos(c_2)$ else $lastpos(c_2)$
* c ₁	true	$firstpos(c_1)$	$lastpos(c_1)$

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: *followpos*

for each node *n* in the tree **do** if n is a cat-node with left child c_1 and right child c_2 then for each *i* in *lastpos*(c_1) do $followpos(i) := followpos(i) \cup firstpos(c_2)$ end do else if *n* is a star-node for each *i* in *lastpos*(*n*) do $followpos(i) := followpos(i) \cup firstpos(n)$ end do end if end do

From Regular Expression to DFA Directly: Algorithm

 $s_0 := firstpos(root)$ where root is the root of the syntax tree *Dstates* := $\{s_0\}$ and is unmarked while there is an unmarked state T in Dstates do mark T for each input symbol $a \in \Sigma$ do let *U* be the set of positions that are in *followpos*(*p*) for some position *p* in *T*, such that the symbol at position *p* is *a* if U is not empty and not in *Dstates* then add U as an unmarked state to *Dstates* end if Dtran[T,a] := Uend do

end do

From Regular Expression to DFA Directly: Example

Time-Space Tradeoffs

Automaton	<i>Space</i> (worst case)	<i>Time</i> (worst case)
NFA	O(t)	$O(t \times x)$
DFA	$O(2^{ t })$	O(x)