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Lexical Analysis and

Lexical Analyzer Generators

Chapter 3
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The Reason Why Lexical 

Analysis is a Separate Phase

• Simplifies the design of the compiler

– LL(1) or LR(1) with 1 lookahead would not be possible

• Provides efficient implementation

– Systematic techniques to implement lexical analyzers 

by hand or automatically

– Stream buffering methods to scan input

• Improves portability

– Non-standard symbols and alternate character 

encodings can be more easily translated
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Interaction of the Lexical 

Analyzer with the Parser

Lexical

Analyzer
Parser

Source

Program

Token,

tokenval

Symbol Table

Get next

token

error error
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Attributes of Tokens

Lexical analyzer

<id, “y”> <assign, > <num, 31> <+, > <num, 28> <*, > <id, “x”>

y := 31 + 28*x

Parser

token

tokenval

(token attribute)
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Tokens, Patterns, and Lexemes

• A token is a classification of lexical units

– For example: id and num

• Lexemes are the specific character strings that 

make up a token

– For example: abc and 123

• Patterns are rules describing the set of lexemes 

belonging to a token

– For example: “letter followed by letters and digits” and 

“non-empty sequence of digits”
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Specification of Patterns for 

Tokens: Terminology

• An alphabet  is a finite set of symbols 
(characters)

• A string s is a finite sequence of symbols 
from 

– |s| denotes the length of string s

–  denotes the empty string, thus || = 0

• A language is a specific set of strings over 
some fixed alphabet 
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Specification of Patterns for 

Tokens: String Operations

• The concatenation of two strings x and y is 

denoted by xy

• The exponentation of a string s is defined 

by

s0 = 

si = si-1s for i > 0

(note that s = s = s)
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Specification of Patterns for 

Tokens: Language Operations
• Union

L  M = {s | s  L or s  M}

• Concatenation
LM = {xy | x  L and y  M}

• Exponentiation
L0 = {}; Li = Li-1L

• Kleene closure
L* = i=0,…, Li

• Positive closure
L+ = i=1,…, Li
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Specification of Patterns for 

Tokens: Regular Expressions
• Basis symbols:

–  is a regular expression denoting language {}

– a   is a regular expression denoting {a}

• If r and s are regular expressions denoting 
languages L(r) and M(s) respectively, then

– r | s is a regular expression denoting L(r)  M(s)

– rs is a regular expression denoting L(r)M(s)

– r* is a regular expression denoting L(r)*

– (r) is a regular expression denoting L(r)

• A language defined by a regular expression is 
called a regular set
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Specification of Patterns for 

Tokens: Regular Definitions

• Naming convention for regular expressions:

d1  r1

d2  r2

…

dn  rn

where ri is a regular expression over

  {d1, d2, …, di-1 }

• Each dj in ri is textually substituted in ri
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Specification of Patterns for 

Tokens: Regular Definitions

• Example:

letter  A | B | … | Z | a | b | … | z
digit  0 | 1 | … | 9

id  letter ( letter | digit )*

• Cannot use recursion, this is illegal:

digits  digit digits | digit
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Specification of Patterns for 

Tokens: Notational Shorthands

• We frequently use the following shorthands:

r+ = rr*

r? = r | 
[a-z] = a | b | c | … | z

• For example:

digit  [0-9]

num  digit+ (. digit+)? ( E (+|-)? digit+ )?
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Regular Definitions and 

Grammars

stmt  if expr then stmt

| if expr then stmt else stmt

| 
expr  term relop term

| term

term  id

| num if  if

then  then

else  else

relop  < | <= | <> | > | >= | =

id  letter ( letter | digit )*

num  digit+ (. digit+)? ( E (+|-)? digit+ )?

Grammar

Regular definitions
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Implementing a Scanner Using 

Transition Diagrams

0 21

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9
start letter

10 11*other

letter or digit

return(gettoken(),

install_id())

relop  < | <= | <> | > | >= | =

id  letter ( letter | digit )*



15Implementing a Scanner Using 

Transition Diagrams (Code)
token nexttoken()

{ while (1) {

switch (state) {

case 0: c = nextchar();

if (c==blank || c==tab || c==newline) {

state = 0;

lexeme_beginning++;

}

else if (c==‘<‘) state = 1;

else if (c==‘=‘) state = 5;

else if (c==‘>’) state = 6;

else state = fail();

break;

case 1:

…

case 9: c = nextchar();

if (isletter(c)) state = 10;

else state = fail();

break;

case 10: c = nextchar();

if (isletter(c)) state = 10;

else if (isdigit(c)) state = 10;

else state = 11;

break;

…

int fail()

{ forward = token_beginning;

swith (start) {

case  0: start =  9; break;

case  9: start = 12; break;

case 12: start = 20; break;

case 20: start = 25; break;

case 25: recover(); break;

default: /* error */

}

return start;

}

Decides what

other start state

is applicable
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The Lex and Flex Scanner 

Generators

• Lex and its newer cousin flex are scanner 

generators

• Systematically translate regular definitions 

into C source code for efficient scanning

• Generated code is easy to integrate in C 

applications
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Creating a Lexical Analyzer with 

Lex and Flex

lex or flex

compiler

lex

source

program

lex.l

lex.yy.c

input

stream

C

compiler

a.out
sequence

of tokens

lex.yy.c

a.out
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Lex Specification

• A lex specification consists of three parts:
regular definitions, C declarations in %{ %}
%%

translation rules
%%

user-defined auxiliary procedures

• The translation rules are of the form:
p1 { action1 }
p2 { action2 }
…
pn { actionn }
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Regular Expressions in Lex
x match the character x

\. match the character .

“string”match contents of string of characters

. match any character except newline

^ match beginning of a line

$ match the end of a line

[xyz] match one character x, y, or z (use \ to escape -) 

[^xyz]match any character except x, y, and z

[a-z] match one of a to z

r* closure (match zero or more occurrences)

r+ positive closure (match one or more occurrences)

r? optional (match zero or one occurrence)

r1r2 match r1 then r2 (concatenation)

r1|r2 match r1 or r2 (union)

( r ) grouping

r1\r2 match r1 when followed by r2

{d} match the regular expression defined by d
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Example Lex Specification 1

%{

#include <stdio.h>

%}

%%

[0-9]+  { printf(“%s\n”, yytext); }

.|\n    { }

%%

main()

{ yylex();

}

Contains

the matching

lexeme

Invokes

the lexical

analyzer

lex spec.l

gcc lex.yy.c -ll

./a.out < spec.l

Translation

rules
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Example Lex Specification 2

%{

#include <stdio.h>

int ch = 0, wd = 0, nl = 0;

%}

delim     [ \t]+

%%

\n        { ch++; wd++; nl++; }

^{delim}  { ch+=yyleng; }

{delim}   { ch+=yyleng; wd++; }

.         { ch++; }

%%

main()

{ yylex();

printf("%8d%8d%8d\n", nl, wd, ch);

}

Regular

definition
Translation

rules
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Example Lex Specification 3

%{

#include <stdio.h>

%}

digit     [0-9]

letter    [A-Za-z]

id        {letter}({letter}|{digit})*

%%

{digit}+  { printf(“number: %s\n”, yytext); }

{id}      { printf(“ident: %s\n”, yytext); }

.         { printf(“other: %s\n”, yytext); }

%%

main()

{ yylex(); 

}

Regular

definitions
Translation

rules
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Example Lex Specification 4
%{ /* definitions of manifest constants */

#define LT (256)

…

%}

delim     [ \t\n]

ws        {delim}+

letter    [A-Za-z]

digit     [0-9]

id        {letter}({letter}|{digit})*

number    {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?

%%

{ws}      { }

if        {return IF;}

then      {return THEN;}

else      {return ELSE;}

{id}      {yylval = install_id(); return ID;}

{number}  {yylval = install_num(); return NUMBER;}

“<“       {yylval = LT; return RELOP;}

“<=“      {yylval = LE; return RELOP;}

“=“       {yylval = EQ; return RELOP;}

“<>“      {yylval = NE; return RELOP;}

“>“       {yylval = GT; return RELOP;}

“>=“      {yylval = GE; return RELOP;}

%%

int install_id()

…

Return

token to

parser

Token

attribute

Install yytext as

identifier in symbol table
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Design of a Lexical Analyzer 

Generator

• Translate regular expressions to NFA

• Translate NFA to an efficient DFA

regular

expressions
NFA DFA

Simulate NFA

to recognize

tokens

Simulate DFA

to recognize

tokens

Optional
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Nondeterministic Finite 

Automata

• Definition: an NFA is a 5-tuple (S,,,s0,F) 

where

S is a finite set of states

 is a finite set of input symbol alphabet

 is a mapping from S to a set of states

s0  S is the start state

F  S is the set of accepting (or final) states
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Transition Graph

• An NFA can be diagrammatically 

represented by a labeled directed graph 

called a transition graph

0
start a

1 32
b b

a

b

S = {0,1,2,3}

 = {a,b}

s0 = 0

F = {3}
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Transition Table

• The mapping  of an NFA can be 

represented in a transition table

State
Input
a

Input
b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}

(0,b) = {0}

(1,b) = {2}

(2,b) = {3}
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The Language Defined by an 

NFA

• An NFA accepts an input string x iff there is some 

path with edges labeled with symbols from x in 

sequence from the start state to some accepting 

state in the transition graph

• A state transition from one state to another on the 

path is called a move

• The language defined by an NFA is the set of input 
strings it accepts, such as (a|b)*abb for the 

example NFA
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Design of a Lexical Analyzer 

Generator: RE to NFA to DFA

s0

N(p1)

N(p2)
start




N(pn)



…

p1 { action1 }

p2 { action2 }

…

pn { actionn }

action1

action2

actionn

Lex specification with

regular expressions

NFA

DFA

Subset construction

(optional)
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N(r2)N(r1)

From Regular Expression to NFA 

(Thompson’s Construction)
fi 

f
a

i

fi

N(r1)

N(r2)

start

start

start 

 



fi
start

N(r) fi
start







a

r1 | r2

r1r2

r*  
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Combining the NFAs of a Set of 

Regular Expressions
2

a
1

start

6
a

3
start

4 5
b b

8b7
start

a b

a { action1 }

abb { action2 }

a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8b7

a b

0
start






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Simulating the Combined NFA 

Example 1
2

a
1

6
a

3 4 5
b b

8b7

a b

0
start







0

1

3

7

2

4

7

7 8

Must find the longest match:

Continue until no further moves are possible

When last state is accepting: execute action

action1

action2

action3

a ba a
none
action3
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Simulating the Combined NFA 

Example 2
2

a
1

6
a

3 4 5
b b

8b7

a b

0
start







0

1

3

7

2

4

7

5

8

6

8

When two or more accepting states are reached, the

first action given in the Lex specification is executed

action1

action2

action3

a bb a
none
action2

action3
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Deterministic Finite Automata

• A deterministic finite automaton is a special case 

of an NFA

– No state has an -transition

– For each state s and input symbol a there is at most one 

edge labeled a leaving s

• Each entry in the transition table is a single state

– At most one path exists to accept a string

– Simulation algorithm is simple
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Example DFA

0
start a

1 32
b b

b
b

a

a

a

A DFA that accepts (a|b)*abb
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Conversion of an NFA into a 

DFA

• The subset construction algorithm converts an 

NFA into a DFA using:

-closure(s) = {s}  {t | s …  t}
-closure(T) = sT -closure(s)

move(T,a) = {t | s a t and s  T}

• The algorithm produces:

Dstates is the set of states of the new DFA 

consisting of sets of states of the NFA

Dtran is the transition table of the new DFA
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-closure and move Examples

2
a

1

6
a

3 4 5
b b

8b7

a b

0
start







-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}

-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}

-closure({7}) = {7}
move({7},b) = {8}

-closure({8}) = {8}

move({8},a) = 

0

1

3

7

2

4

7

7 8

a ba a
none

Also used to simulate NFAs
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Simulating an NFA using

-closure and move

S := -closure({s0})

Sprev := 

a := nextchar()

while S   do

Sprev := S

S := -closure(move(S,a))

a := nextchar()

end do

if Sprev  F   then

execute action in Sprev

return “yes”

else return “no”
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The Subset Construction 

Algorithm

Initially, -closure(s0) is the only state in Dstates and it is unmarked

while there is an unmarked state T in Dstates do

mark T

for each input symbol a   do

U := -closure(move(T,a))

if U is not in Dstates then

add U as an unmarked state to Dstates

end if

Dtran[T,a] := U

end do

end do
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Subset Construction Example 1

0
start a

1 10

2

b

b

a

b

3

4 5

6 7 8 9
 











A
start

B

C

D E

b

b

b

b

b

a
a

a

a

Dstates

A = {0,1,2,4,7}

B = {1,2,3,4,6,7,8}

C = {1,2,4,5,6,7}

D = {1,2,4,5,6,7,9}

E = {1,2,4,5,6,7,10}

a
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Subset Construction Example 2

2
a

1

6
a

3 4 5
b b

8b7

a b

0
start






a1

a2

a3

Dstates

A = {0,1,3,7}

B = {2,4,7}

C = {8}

D = {7}

E = {5,8}

F = {6,8}

A
start

a

D

b

b

b

a
b

b
B

C

E F

a

b

a1

a3

a3 a2 a3
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Minimizing the Number of States 

of a DFA

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

A
start

B D E
b b

a

a

b

a

a
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From Regular Expression to DFA 

Directly

• The important states of an NFA are those 

without an -transition, that is if

move({s},a)   for some a then s is an 

important state

• The subset construction algorithm uses only 

the important states when it determines

-closure(move(T,a)) 
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From Regular Expression to DFA 

Directly (Algorithm)

• Augment the regular expression r with a 

special end symbol # to make accepting 

states important: the new expression is r#

• Construct a syntax tree for r#

• Traverse the tree to construct functions 

nullable, firstpos, lastpos, and followpos
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From Regular Expression to DFA 

Directly: Syntax Tree of (a|b)*abb#

*

|

1

a
2

b

3
a

4
b

5

b

#
6

concatenation

closure

alternation

position

number

(for leafs )
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From Regular Expression to DFA 

Directly: Annotating the Tree
• nullable(n): the subtree at node n generates 

languages including the empty string

• firstpos(n): set of positions that can match the first 
symbol of a string generated by the subtree at 
node n

• lastpos(n): the set of positions that can match the 
last symbol of a string generated be the subtree at 
node n

• followpos(i): the set of positions that can follow 
position i in the tree
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From Regular Expression to DFA 

Directly: Annotating the Tree

Node n nullable(n) firstpos(n) lastpos(n)

Leaf  true  

Leaf i false {i} {i}

|

/ \

c1 c2

nullable(c1)

or

nullable(c2)

firstpos(c1)



firstpos(c2)

lastpos(c1)



lastpos(c2)

•

/ \

c1 c2

nullable(c1) 

and

nullable(c2)

if nullable(c1) then

firstpos(c1) 

firstpos(c2)

else firstpos(c1)

if nullable(c2) then

lastpos(c1) 

lastpos(c2)

else lastpos(c2)

*

|

c1

true firstpos(c1) lastpos(c1)
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From Regular Expression to DFA 

Directly: Syntax Tree of (a|b)*abb#

{6}{1, 2, 3}

{5}{1, 2, 3}

{4}{1, 2, 3}

{3}{1, 2, 3}

{1, 2}{1, 2} *

{1, 2}{1, 2} |

{1}{1} a {2}{2} b

{3}{3} a

{4}{4} b

{5}{5} b

{6}{6} #

nullable

firstpos lastpos

1 2

3

4

5

6
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From Regular Expression to DFA 

Directly: followpos

for each node n in the tree do

if n is a cat-node with left child c1 and right child c2 then

for each i in lastpos(c1) do

followpos(i) := followpos(i)  firstpos(c2)

end do

else if n is a star-node

for each i in lastpos(n) do

followpos(i) := followpos(i)  firstpos(n)

end do

end if

end do
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From Regular Expression to DFA 

Directly: Algorithm

s0 := firstpos(root) where root is the root of the syntax tree

Dstates := {s0} and is unmarked

while there is an unmarked state T in Dstates do

mark T

for each input symbol a  do

let U be the set of positions that are in followpos(p)

for some position p in T,

such that the symbol at position p is a

if U is not empty and not in Dstates then

add U as an unmarked state to Dstates

end if

Dtran[T,a] := U

end do

end do
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From Regular Expression to DFA 

Directly: Example

1,2,3
start a 1,2,

3,4

1,2,

3,6

1,2,

3,5

b b

b b

a

a

a

Node followpos

1 {1, 2, 3}

2 {1, 2, 3}

3 {4}

4 {5}

5 {6}

6 -

1

2

3 4 5 6
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Time-Space Tradeoffs

Automaton
Space

(worst case)
Time

(worst case)

NFA O(|r|) O(|r||x|)

DFA O(2|r|) O(|x|)


